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AlmB'~'t--This paper presents a combined analytical-numerical study for the Stokes flow caused by an 
arbitrary body of revolution translating axisymmetrically in viscous fluid toward an infinite plane, which 
can be either a solid wall or a free surface. A singularity method based on the principle of distribution 
of a set of Sampson spherical singularities along the axis of revolution within a prolate body or on the 
fundamental plane within an oblate body is used to find the general solution for the fluid velocity field 
which satisfies the boundary condition at the infinite plane. The no-slip condition on the surface of the 
translating body is then satisfied by applying a boundary collocation technique to this general solution 
to determine the unknown coefficients. The hydrodynamic drag exerted on the body is evaluated with good 
convergence behavior for various cases of the body shape and the separation between the plane and the 
body. For the motion of a sphere normal to a solid plane or a planar free surface, our drag results agree 
very well with the exact solutions obtained by utilizing spherical bipolar coordinates. For the translation 
of a spheroid, prolate or oblate, along its axis of symmetry and perpendicular to a plane wall, the 
agreement between our results and the numerical solutions obtained using the boundary integral method 
is also quite good. In addition to the solutions for a spheroidal body, the drag results for the axially 
symmetric motions of a Cassini oval towards a solid plane and a planar free surface are also presented. 
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1. I N T R O D U C T I O N  

The application of  hydrodynamic theory to the behavior of  particles moving in a viscous fluid at 
low Reynolds numbers has continued to receive much attention from investigators in the fields of  
chemical and biomedical engineering and science. The majority of  these particle phenomena are 
fundamental in nature, but permit one to develop rational understanding of  many practical systems 
and industrial processes such as sedimentation, flotation, spray drying and the motion of  red blood 
cells in an artery or vein. A summary for the current state of  knowledge in this area is given in 
Kim & Karrila (1991). 

The theoretical treatment of  this subject has grown out of  the work of  Stokes (1851) for a 
translating sphere. Oberbeck (1876) extended this result to the translation of  an ellipsoid. More 
recently, solutions of  the creep-flow problem have been derived for bodies which correspond to 
a coordinate surface of  one of the special orthogonal coordinate systems in which the Stokes 
equations are simply separable (Payne & Pell 1960; Goren & O'Neill 1980) and for long slender 
bodies (Batchelor 1970; Cox 1970). Additionally, the low-Reynolds-number flow caused by the 
motion of  a particle of  more general shape in an unbounded fluid has also been treated in the 
literature by the truncated-series boundary-collocation method (Gluckman et  al. 1972), the 
singularity method (Chwang & Wu 1975) and the boundary integral method (Youngren & Acrivos 
1975; Weinbaum et al. 1990; Pozrikidis 1992). 

In most  technical applications, particles are not isolated and the surrounding fluid is externally 
bounded by solid or fluid surfaces. Thus, it is important  to determine if the presence of neighboring 
boundaries significantly affects the movement  of  particles. Through an exact representation in 
spherical bipolar coordinates, the motion of  a spherical particle normal to an infinite planar surface 
was independently analyzed by Maude (1961) and Brenner (1961). The translation and rotation 
of  a sphere on which a constant force and/or torque is applied parallel to a plane wall was 
investigated by O'Neill (1964) using bipolar coordinates. The boundary effects on the motion of  
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a sphere were also examined for many other geometries such as in a long circular tube (Haberman 
& Sayre 1958), between two parallel plates (Ganatos e t  al. 1980), along the axis of a finite disk 
(Dagan e t  al. 1982) and near a circular orifice (Yan e t  al. 1987). 

On the other hand, the slow motion of a nonspherical particle next to a plane wall has been 
studied for several cases. Using cylindrical bipolar coordinates, the two-dimensional creeping 
motion of a circular cylinder near a plane wall was analyzed by Jeffrey & Onishi (1981) and Keh 
e t  al. (1991). Dabros (1985) applied a technique of internal distribution of Stokeslets and potential 
sources to calculate the angular velocity of a prolate spheroid adjacent to a rigid plane wall. The 
axisymmetric flow induced by the motion of an arbitrary prolate body of revolution normal to a 
rigid plane wall was treated by Yuan & Wu (1987) using a method of internal distribution of 
spherical singularities combined with the boundary-collocation technique. Recently, Hsu & 
Ganatos (1989) solved for the motion of an arbitrarily-shaped rigid body in Stokes flow adjacent 
to a rigid plane wall using the boundary integral equation method. 

In this paper we use the method of distributed internal singularities incorporated with the 
bounded-flow collocation technique developed by Yuan & Wu (1987) to analyze the axisymmetric 
creeping flow generated by an arbitrary body of revolution translating along its axis of symmetry 
and prependicular to a plane surface. Differing from their work, the translating body can be either 
prolate or oblate and the plane surface can be either a solid wall or a free surface here. The drag 
force exerted on the body by the fluid as a function of the relative separation between the body 
and the plane is calculated for various body shapes: a sphere; a spheroid; and a Cassini oval. For 
the cases of a sphere and a spheroid, our drag reuslts show excellent agreement with the exact 
solutions derived by Maude (1961) and Brenner (1961) and with the numerical calculations 
obtained by Hsu & Ganatos (1989), respectively. 

2. MATHEMATICAL DESCRIPTION OF THE PROBLEM 

We consider the creeping motion caused by an arbitrary axisymmetric body translating with a 
constant velocity in an incompressible, Newtonian fluid along its axis of revolution and perpendicu- 
lar to an infinite plane located at a distance d from the center of the body. The fluid is at rest at 
infinity. The body is rigid and the planar boundary can be either a solid wall or a free surface. 
The circular cylindrical coordinates (p, ~b, z) and the spherical coordinates (r, 0, q~) are utilized and 
the body center is chosen to be the origin of the coordinates instantaneously, as shown in figure 
1. The governing equations for the fluid motion are 

~ ' / V E v  - -  Vp = 0 [la] 

and 

V.v = 0, [lb] 

where ~/is the fluid viscosity, v(x) is the fluid velocity and p(x) is the dynamic pressure. 

S b 

r 

p 

z = d  

Figure 1. Motion of an arbitrary axisymmetric body along its axis of revolution and normal to an infinite 
planar boundary. 
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Owing to the axisymmetric nature of the flow, it is convenient to introduce the Stokes stream 
function ~/' which satisfies [lb] and is given in cylindrical coordinates by 

1 0~ 
vp = - - -  [2a] 

p az 

and 

1 a ~  
v~ = - -  - - .  [2b] p c3p 

Here, vp and v~ are the radial and axial components of the fluid velocity, respectively. Taking the 
curl of [la] and applying [lb], as well as the definition of the stream function, give a fourth-order 
linear partial differential equation for ~:  

E4~ u = E2(E2~F) = 0. [3] 

In cylindrical coordinates, the axisymmetric Stokesian operator E 2 is given by 

E 2 = p ~ ~p + Oz----- ~ . [4] 

Because the fluid velocity satisfies the no-slip requirement at the fluid/solid interfaces of the body 
and the wall and the fluid is motionless far away from the body, the boundary conditions for the 
case of the translation of a body toward a solid plane are: 

v = Uez on Sb; [Sa] 

v = 0 at z = d; [Sb] 

and 

v---,0 as (p: + z2)1/2~oo and z ~<d. [5c] 

Here, U is the velocity of the body, e, is the unit vector in the axial direction and Sb denotes the 
surface of the body. For the case that the body is moving toward a planar free surface, [5b] is 
replaced by 

avp 
v~=0 and ~-z = 0  a t z = d .  [6a, b] 

The deformation of the free surface produced by the approaching body will not be considered here, 
although it may not be neglected in some real situations involving heavy viscous liquids, especially 
for very close approach of the body to the free surface (Lee & Leal 1982). 

The drag force F (=Fe , )  exerted by the fluid on the surface of the axisymmetric body can be 
determined from (Happel & Brenner 1983) 

F=~ffsbP2n'V(~E2~)dS, [7] 

where n is a unit vector normal to the body surface Sb, pointing into the fluid. 
To solve [3]-[6a, b], a set of Sampson spherical singularities (also called Sampsonlets) is chosen 

and distributed along the axis of revolution within a prolate body (Wu 1984; Yuan & Wu 1987) 
or on the fundamental plane within an oblate body (Zhu & Wu 1985). At first, the reflection of 
each Sampsonlet with respect to the planar boundary is ascertained by satisfying the boundary 
conditions [5c] and [Sb] (for a solid plane) or [6a, b] (for a free surface). Then, the disturbance of 
the flow field generated by the body and the planar boundary is approximated by the superposition 
of the set of the planar reflection of the spherical singularities. Finally, boundary condition [Sa] 
on the surface of the body can be satisfied by making use of the multipole collocation method. 
For the special case of a spherical body, only a single Sampsonlet which is placed at the body center 
is needed. 

In the following section we shall derive the reflections of an arbitrarily-located Sampsonlet with 
respect to a solid plane and a planar free surface. 
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3. THE IMAGE OF A SAMPSONLET WITH RESPECT TO AN I N F I N I T E  PLANE 

The stream function for the fluid motion caused by a Sampson spherical singularity at the point 
p = 0 and z = h is (Sampson 1891) 

~Ps = ~ [B.B~'(p, z - h) + D,,D~'(p, z - h)], [8] 
. = 2  

where B. and D. are unknown constant coeflicicnts, 

1 G - i /2[ - _z 1 [9a] a:"(p,  z)  = (p2 + : / . - i ) , 2  . + 

and 

, [ z ]  
D~'(p, z) = (p 5 + z2)¢._3)/2 G2 I/2 (p 5 ~z2)l/~ , [9b] 

and (72 ~/2 is the Gegenbauer polynomial of the first kind of order n and degree - 1/2. When infinite 
plane is at z -- d (d > 0, d > h), the stream function for the region z ~< d (containing the Sampsonlet 
at p = 0 and z --h)  can be linearly decomposed into two parts: 

~P = ~w + P~. [10] 

Here ~w is a solution of [3] that represents the disturbance produced by the infinite plane and is 
given by a Fourier-Bess¢l integral, 

~,~ = ~ :  P Jl (c0p) [X(o)) + z Y(o))] c °" do), [11] 

where J,  is the Bessel function of the first kind of order n and X(o)) and Y(o)) arc unknown 
functions of co. ~u, which is also a solution of [3], is given by [8]. Note that the boundary condition 
[5c] is immediately satisfied by a solution of the forms [8] and [11]. 

Substituting [8] and [11] into [10], one can apply relations [2a, b] to yield 

f0 ° vp = [B.B'~(O, z - h) + D.D~(p, z - h)l - o)J~ (o)p)G*(co, z) do) [12a] 

and 

where 

v~ = .=5 ~" [B.B~(p, z - h) + D.D~(p, z - h)] - f: COJo(o)p)F*(o), z) do), 

, n+l G;~+/21. z 1 B.(p, z) = p ( ~ +  z2)./2 (p, + z2)m , 

D,. . . + 1  ,/2 V ~ z2),/21 ' . (p. z )  = P (p 2 + z 2)¢.- 5)/2 G ; 4 ,  L(P 2 
..I 

, [,j 
B" (p, z) = (O 2 + z 2)¢, + ~)/z P. (p 2 + z ~)1/2 , 

, ,  [ z ]  
1). (p, z) = (O 5 + ~2)(.-o/2 (72112 (05 + z2)1/2 , 

l [ z ;  
-~ (05 + z2)¢.- 1~/2 P. (05 ~ z2)ln , 

F*(o), z) = [X(o)) + z Y(o))] e% 

6;*(o), z) -- [o)X(o)) + (1 + o)z) Y(o))] e~"/o) 

[12b] 

[13a] 

[13b] 

[13c1 

[13d] 

[14a] 

[14b] 
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and P. is the Legendre polynomial of order n. For the cases of a solid plane wall and a planar 
free surface, [12a, b] can be simplified by using the boundary conditions [5b] and [6a, b], 
respectively. 

3.1. A solid plane 

Application of the no-slip condition [5b] at the solid plane to [12a, b] leads to 

a n d  

to J, (top)G*(to, d)  dto = [B .B ' (p ,  d - h)  + D.D'~(p, d - h)] 
. = 2  

Inversing the 
polynomials result in 

oo t o n - 3  
F*(to, d) = -~2.-J n---~, e-~d-h){B"to2 + D.[(2n -- 3)to(d - h) - (n - 1)(n - 3)]} 

and 

[15a] 

f o  toJo(top )F*(to, d)  dto = - ~ [B.B" (p, d - h)  + D . D  ~ (p, d - h)]. [15b] 
11=2 

above Hankel transforms and using the properties of the Legendre and Gegenbauer 

[ 16a] 

/~"(p, z, h )  = 

#;6o, z, h) = 

6'.(p, z, h )  = 

where 

#;"6o, z, h) = 

,~;"~, z, h )  = 

v~= ~ [ B . f l ~ ( p , z , h ) +  D . f ~ ( p , z , h ) ] ,  
n = 2  

[19b] 

B ' ( p , z  - h ) - B ' ( p ,  2 d - z  - h ) -  2(n + 1 ) ( d - z ) B ' + ~ ( p ,  2 d - z  - h ) ,  [20a] 

D~'(p, z - h)  - D~'(p, 2d - z - h) + 2(n - 2)(d - z )B~'_ ~(p, 2d - z - h) 

- 2(2n - 3)(d - h ) ( d  - z )B " (p ,  2d - z - h), [20b] 

B'~(p,z - h ) - B ' ( p ,  2 d - z  - h) + 2(n + 1 ) ( d - z ) B ' . + ~ ( p ,  2d - z  - h ) ,  [21a] 

D ' ~ ( p ,  z - h )  - D ' ~ ( p ,  2 d  - z - h )  - ( 2 / n ) ( n  - 1 ) ( n  - 3 ) ( d  - z ) B ' _  ~ ( p ,  2 d  - z - h )  

+ 2(2n -- 3)(d - h ) ( d  - z)S'~(p, 2d - z - h), [21b] 

B"(p, z - h)  - B"(p ,  2 d - z  - h ) -  2(n + l ) ( d - z ) B " +  I(p, 2 d - z  - h )  

[21c] 

and 

Y(to) = - [F*(to, d) - G*(to, d)]to e -~ .  [17b] 

Substitution of [14a, b], [16a, b] and [17a, b] into [12a, b] leads to the velocity components for the 
fluid motion in terms of the unknown coefficients B. and D. only. After considerable algebraic 
manipulation, the reflection of the Sampson singularity at the point p = 0 and z = h with respect 
to a solid plane at z = d (superimposing with the singularity itself) is obtained in the form 

7 / = ~ [B.fl."(p, z, h)  + D.b'~'(p, z, h)], [18] 
n = 2  

vp = ~ [BJ3'~(p, z, h)  + D.6'~(p, z, h)] [19a] 
n=2  

a n d  

(./)n-- 3 

G*(to, d) = - ~ T e-~d-h){B"to2 + D.[(2n -- 3)to(d - h)  - n(n - 2)]}. [16b] 
n = 2  

Utilizing [14a, b] and taking z = d, one can express X(to) and Y(to) in terms of F*(to, d) and 
G*(to, d): 

X(to) = [(1 + cod)F*(to, d)  - codG*(to, d)] e -~d [17a] 



190 H.J .  KEH and C. H. TSENG 

and 

6~(p,  z, h)  = D~(p ,  z - h )  - D ' ( p ,  2d - z - h )  + 2(n - 2)(d - z ) B ~ _ ,  (p, 2d - z - h )  

- 2 (2n  - 3)(d - h ) ( d  - z )B"  (p, 2d  - z - h ). [21d] 

3.2. A p lanar  f r e e  surface 

For the case of a free surface plane, we let the velocity components in [12a, b] satisfy the 
boundary condition [6a, b] on the plane. This yields [15b] and 

f0 coJ,(cop)H*(co,  d)dco  = {B . [ - (n  + 1 ) B ' . + l ( p , d - h ) ] +  D n [ - ( n  + 1 ) D ' + l ( p , d - h )  
. = 2  

+ 2(d - h)B ' . (p ,  d - h)  - (2 /n)B' ._  , (p.  d - h)]}, [22] 

where 

OG* 
H*(CO, z) - Oz = [coX(w) + (2 + coz)Y(co)] e °~z. [23] 

Inversing the Hankel transform in [22] and using the properties of Gegenbauer polynomials lead 
to 

CO.O n 2 
H*(c0, d) = - ~ ---~.t e -~a -  h){B, co 2 + D,[(2n - 3)co(d - h) - n 2 + 3]}. [24] 

n = 2  

Using [14a] and [23] and taking z = d, one can express X(co) and Y(co) in terms of  F*(co, d) and 
H*(CO, d): 

X(co) = ½[(2 + cod)F*(co, d)  - dn*(co ,  d)] e - ~  [25a1 

and 

Y(CO) = l [ -  COF*(CO, d) + H*(co, d)] e -~ .  [25b1 

Substitution of  [16a], [24] and [25a, b] into [10] and utilization of [2a, b] lead to the stream function 
and velocity components for the fluid in the region z ~< d in terms of  the unknown coefficients B, 
and D, only. The results for the reflection of  the Sampsonlet at the point p = 0 and z = h with 
respect to a planar free surface at z = d are 

~] ,t, D l,,. = [B.~. (O, z, h) + . ? .  [p, z, h)], 
n = 2  

[26] 

a n d  

where 

vp = ~ [B.~' . (p,  z, h )  + D.7 ' . (p ,  z, h)] 
n = 2  

v~ = ~ [ B . o t ~ ( p ,  z ,  h )  + D . y ~ ( p ,  z ,  h)] ,  
n = 2  

ot'~'(p, z, h)  = B " ( p ,  z - h)  - B; ' (p ,  2d - z - h) ,  

[27a] 

[27b] 

[28a] 

?~'(p, z, h) = D~'(p, z - h)  
2n - 3 
- -  ( 2 d  - z - h)B' ."(p ,  2 d  - z - h )  

n - 3  
+ B~"_2(p, 2d - z - h) ,  [28b] 

n 

• ' .(p, z ,  h )  = B'~(p,  z - h )  + B'~(p,  2 d  - z - h ) ,  [29a]  
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2n - 3 
7".(P, z, h )  = D' . (p,  z - h )  + 

n 
B' h)  (2d - z - h) ._ i (P, 2d - z - 

n - 2  
+ B' ._2(p,  2d  - z - h) ,  [29b] 

n - 1  

and 

~t"(p, z, h )  = B~(p ,  z - h )  - B~(p ,  2d  - z - h)  

y ~ ( p , z , h )  = D ~ ( p , z  -- h)  
2n - 3 
- -  (2d - z - h)B"_ , (p ,  2d  - z - h)  

[29c1 

n - 3  
B tt I + . - 2 tP, 2d - z - h). [29d] 

n 

Equations [19a, b] and [27a, b] for the velocity fields caused by a Sampsonlet in the presence of  
a solid plane and a free surface plane, respectively, will be utilized in the following sections to 
formulate the velocity field induced by the axisymmetric motion of  a body of  revolution toward 
a plane surface. 

4. S O L U T I O N S  FOR THE MOTIO N  OF A S P H ERE N O R M A L  TO A 
P L A N A R  B O U N D A R Y  

In this section the planar reflection of  a Sampson singularity derived in the previous section is 
used to obtain solutions for the motion of a spherical body of  radius a toward an infinite plane. 
The results will be compared with the exact solutions obtained by Maude (1961) and Brenner (1961) 
using spherical bipolar coordinates. 

The disturbance of  the flow field produced by a sphere can be represented by a Sampsonlet placed 
at its center which is the origin of  the coordinate frame. Thus, the velocity components for the 
fluid motion caused by a sphere moving perpendicular to a solid plane are given by [19a, b] with 
h =0:  

and 

vp = ~. [B. fl" (p, z, O) + D .  t5 '. (p, z, 0)] 
. = 2  

[30a] 

v. = )"  [ B . f l ' ( p ,  z, O) + D.  6~,(p, z, 0)]. [30b] 
. = 2  

To determine the unknown constants B. and D., one can apply the boundary condition [5a] at the 
sphere surface to these velocity components to yield 

~. [B.fl ' .(p, z, O) + D.6".(p,  z, 0)] = 0 
n=2  (p2 + Z2 = a2). [31a, b] 

[B.fl~ (p, z, O) + D . 6 "  (p, z, 0)] = U 
n = 2  

Similarly, for the case of the motion of  a sphere toward a planar free surface, the fluid velocity 
field can be obtained from [27a, b] with h = 0: 

vp = ~. [B.a~,(p, z, O) + D.7 ' . (p ,  z, 0)] [32a] 
. = 2  

and 

v : =  ~. [B.ct'~(p,z, O) + D.~'~(p,z ,  O)]. 
n = 2  

[32b] 

MF 20/I--M 
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Application of [5a] and [32a, b] leads to the equations to determine B, and D,: 

[Bn~'~(p, z, O) + O,v'~(p, z, 0)1 = 0 
n = 2  

( p 2  + Z 2 = a2). [33a, b] 

[Bn~'(p,z, O) + DnT"(p,z, O)]= U 
n = 2  

Substituting [30a, b] (or [18]) or [32a, b] (or [26]) into [7] and applying the orthogonality 
properties of the Gegenbauer polynomials, one can obtain a simple formula for the drag force 
exerted by the fluid on the body: 

F = 4zc~/D2. [34] 

That is, only the first multipole of the Sampson singularity contributes to the drag exerted on the 
body. 

The exact expression for the drag force on a sphere moving perpendicular to a plane surface 
bounding a semi-infinite viscous fluid is given by Maude (1961) and Brenner (1961) as 

F = - 6nrla Uf, [35] 

where f, which is a function of the ratio of the sphere radius to the distance of the sphere center 
from the planar boundary, is the correction to Stokes' law arising from the presence of the plane. 
For the case of a solid plane wall, 

n(n + 1) F2sinh(2n + 1)4 + (2n + 1)sinh 2 ~ _ 1]; 
f sinh [36] 

"" (2n - 1)(2n + 3) L 4 sinh2(n + ½)4 - (2-nn ~ 1-~ s--~-n~ ¢ J n = l  

for the case of a free surface, 

n(n + 1) F4cosh2(n + ½)4 + (2n + 1) 2 sinhZ ~ _ 1] 
f =  ]sinh [37] 

(2n - 1)(2n + 3)L 2 sinh(2n + 1)4 - ( 2 n  + 1)sinh 2~ 1" n = l  

In [36] and [37] the bipolar-coordinate parameter ¢ is related to a/d via the expression 

¢ = sech- l a [38] 
d" 

To satisfy the conditions [3 la, b] or [33a, b] exactly along the entire semicircular generating arc 
of the sphere in a meridian plane would require the solution of the entire infinite array of unknown 
constants B, and D,. However, the boundary collocation technique (Gluckman et al. 1971; Dagan 
et al. 1982) enforces the boundary conditions at a finite number of discrete points on the body's 
generating arc and truncates the infinite series [30a, b] or [32a, b] into finite ones. The unknown 
constants in each term of the series permit one to satisfy the exact boundary conditions at one 
discrete point on the body surface. Thus, if the boundary is approximated by satisfying conditions 
[31a, b] or [33a, b] at N discrete points, the infinite series in [30a, b] and [32a, b] are truncated after 
N terms, resulting in a system of 2N simultaneous linear algebraic equations in the truncated form 
of [31a, b] or [33a, b]. This matrix equation can be solved by any of the standard matrix-reduction 
techniques to yield the 2N unknown constants B, and D, required in the truncated equations of 
[30a, b] or [32a, b] for the flow field. The accuracy of the truncation technique can be improved 
to any degree by taking a sufficiently large value of N. Naturally, the truncation error vanishes as 
N--~ oo. 

When specifying the points along the semicircular generating arc of the sphere where the 
boundary conditions are exactly satisfied, the first point that should be chosen is 0 = n/2, since this 
point defines the projected area of the sphere normal to the direction of motion. In addition, the 
points 0 = 0 and 0 = n are important because they control the gap between the sphere and the plane. 
However, an examination of the system of linear algebraic equations for the unknown constants 
B, and D, shows that the coefficient matrix becomes singular if these points are used. To overcome 
the difficulty of singularity and to preserve the geometric symmetry of the spherical boundary about 
the equatorial plane 0 = n/2, points at 0 = ~, n/2 - ~, n/2 + ~ and n - ~ are taken to be four basic 
collocation points. Additional points along the boundary are selected as mirror-image pairs about 
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1. Numerical  results of  the Stokes-law correction factor f for a sphere translating perpendicular 
to a solid plane 

193 

N a/d = 0.2 a/d = 0.4 a/d = 0.6 a/d = 0.8 a/d = 0.9 a/d = 0.95 a/d = 0.99 

4 1.2851 1.7599 2.7448 7.7890 48.708 462.10 81262.0 
8 1.2851 1.7563 2.6695 5.3145 11.583 45.828 5973.4 

12 i.7563 2.6695 5.3052 10.468 23.124 2328.9 
16 5.3053 10.439 20.934 -60 .01  
20 5.3053 10.440 20.573 58.524 
24 10.441 20.568 86.041 
28 10.441 20.574 54.063 
32 20.576 92.274 
36 20.576 97.172 
52 100.73 
68 100.88 
72 100.89 
76 100.89 

a 1.2851 1.7563 2.6695 5.3053 10.441 20.576 100.89 

aExact solution (computed from [36]). 

the plane 0 = n/2 to divide the 0 coordinate into equal parts. The optimum value of ~t in this work 
is found to be 0.01 °, with which the numerical results of the correction factor for Stokes' law can 
converge to at least four significant figures for any ratio of aid up to 0.99. 

In tables 1 and 2, a number of numerical solutions of the Stokes-law correction factor for the 
motions of a sphere normal to a solid plane wall and to a planar free surface, respectively, are 
presented for various values of the spacing parameter aid using the collocation technique. A DEC 
5240 work station was used to perform the calculations. All of the results were obtained by 
increasing the number of collocation points N until the convergence of five significant digits is 
achieved (except for one case of a/d = 0.99). The exact solutions forfcalculated using [36] or [37] 
are also listed in the bottom row of  tables 1 and 2 for comparison. It can be seen that the results 
from the collocation method agree very well with the exact results for the desired accuracy. The 
rate of convergence is rapid for small values of aid and deteriorates monotonically as the distance 
between the sphere and the planar boundary decreases. The numerical solutions for a sphere 
translating to a solid plane wall using boundary collocation were also presented by Ganatos et al. 
(1980) for some cases of a/d <<. 0.88. 

5. A X I S Y M M E T R I C  M O T I O N  O F  A N  A R B I T R A R Y  P R O L A T E  B O D Y  T O W A R D  A 

P L A N A R  B O U N D A R Y  

We consider in this section the fluid motion caused by an arbitrary prolate axisymmetric body 
translating along its axis of symmetry and perpendicular to a plane surface. A segment between 
points A(p = 0, z = -c~)  and B(p = 0, z = c2) is taken along the axis of revolution inside the body 

Table 2. Numerical results of  the Stokes-law correction factor f for a sphere translating perpendicular 
to a planar free surface 

N a/d = 0.2 a/d = 0.4 a/d = 0.6 a/d = 0.8 a/d = 0.9 a/d = 0.95 a/d = 0.99 

4 1.1756 1.4259 1~8551 3.3210 10.217 57,864 6361.9 
8 1.1756 1.4242 1.8282 2.7720 4.4467 10.188 760.03 

12 1.4242 1.8283 2.7724 4.3331 7.3011 165.31 
16 1.8283 2.7724 4,3329 7.1522 80.860 
20 4.3330 7.1407 - 4 . 0 8 2  
24 4.3331 7.1410 21.382 
28 4.3331 7.1415 20.008 
32 7.1416 27.428 
36 7.1416 27.411 
52 27.828 
64 27.856 
68 27.858 
72 27.870 

a 1.1756 1.4242 1.8283 2.7724 4.3331 7.1416 27.860 

aExact solution (computed from [37]). 
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on which a set of Sampson spherical singularities are distributed (c~ and % are positive constants). 
If the nose and the tail of the body are round, then their centers of curvature can be chosen as 
A and B. The general solution of the flow field outside the body in the semi-infinite fluid can be 
constructed by the superposition of the planar reflection of the Sampsonlets distributed on the 
segment AB. For the case of a solid plane wall, [19a, b] are used to result in 

Vp = [B.(t)~'~(p, z, t) + D.(t)6'.(p, z, t)] dt [39a1 
n = 2  c I 

and 
c2 

vz = [B.(t)fl~(p, z, t) + D.(t)f'~'(p, z, t)] dt. [39b] 
n = 2 d  c 1 

Equations [39a, b] provide an exact solution for [la, b] that satisfies [5b] and [5c] and the unknown 
density distribution functions for the singularities, B.(t) and D.(t), must be determined from the 
remaining boundary condition [5a] using the collocation technique. The drag force exerted by the 
fluid on the axisymmetric body is obtained by substitution of [39a, b] into [7] and the application 
of the orthogonality properties of the Gegenbauer polynomials, with a result similar to [34]: 

F = 4rctl D2(t) dt. [40] 
--C 1 

The density distribution functions B.(t) and D.(t) in [39a, bl can be approximated to various 
orders to satisfy the boundary condition at the body surface. In this work we consider the 
zeroth-order, first-order and second-order approximations. 

5.1. Constant density distribution 

In the constant density approximation, the segment AB is divided into M small segments and 
the density distribution functions in each small segment are substituted by constants. Let tin_ ~ and 
tm denote the coordinates of the two end points for the ruth segment, then one has to = -c~ and 
tM=%. If the length of each segment is the same, then t j = - c ~ + j ( c l + c 2 ) / M  for 
j = 1, 2 . . . . .  M -  1. In order to use the multipole collocation technique to satisfy the no-slip 
condition at the body surface, the infinite series in [39a, b] are furthermore truncated after N terms. 
With these arrangements [39a, b] become 

M N + I  

v,= ~ ~ [B.,J3*mj(p,z)+ D~*ml(p,z)] [41a] 
m = l  n=2  

and 
M N + I  

vz = ~ ~ [B.m[3*~ (p, z) + D~6*,~*~ (p, z)], [41b] 
m = l  . = 2  

where the functions ]/*t,  6nm~, //** and 6n.~ are defined by [A6]-[A9] in the appendix and B.. and 
D..  are unknown density constants. 

Application of the boundary condition [5a] to [41a, b] gives 

M N + I  

~ [B,~*t(p ,z)+D., .6*ml(p,z)]=O 
m = l  n = 2  

M N + I (on Sb). [42a, b ]  

~, [B.mfl*n~(p,z)-b D.mb*.~(p,z)] = U 
m = l  n=2  

The collocation method allows the body's boundary to be approximated by satisfying [42a, b] at 
M N  discrete values of z (rings) on its surface. This results in a set of 2MN simultaneous linear 
algebraic equations, which can be solved by any matrix-reduction technique to yield the 2MN 
density constants B.I and D.m required in [41a, b] for the fluid velocity field. Once these constants 
are determined, the drag force on the body can be obtained from [40], with the result 

M 

F=4rrr/ ~ D~(t , . - tm_, ) .  [43] 
m = l  
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5.2. Linear density distribution 
The segment AB is divided into M small segments, as we did in the previous subsection. However, 

the density functions in the ruth segment are now replaced by linear functions: 

[ B . ( t ) l = t - t . _ t [ B ~ ] +  tm--t ~B,,fm_z) ] fOrtm_,<<.t<~t.~. [44] 
D, (t)_] tm--tm_l Dnm tm--tm_lLDn(m_l)d 

Here, tin_ ~ and tm are the coordinates of the end points of the segment and B~m_ ~), Dn(m-D, Bnm 
and D~, are the corresponding density constants at these points. 

Substituting [44] into [39a, b] and truncating the infinite series after N terms, one has 

M N + I  

VP = 2 E [Bn(m-I) V'nml(P,g)+ BnmV'nm2(P,z)+ Dn(m-t) w'nml(p,z)+ Dnmw'nm2(p,7")] [ 4 5 a ]  
ra=l  n = 2  

and 
M N + I  

Vz= E E [Bn(m-oV"ml(P,z)+ BnmV~n2(P,z)+ Dnfm-O w'ml(p,z)+ Dnmw'm2(p,z)], [45b] 
r e = I n = 2  

I t t t # pp tt pt where the functions V,m~, Vnm2, Wnml, Wran2, Vnml, Vnm2, Wnml and Wnm 2 are defined by [A1] and 
[A2] in the appendix. Application of the boundary condition [5a] to [45a, b] can be accomplished 
by utilizing the collocation technique. On the body surface, [5a] along with [45a, b] are applied at 
(M + 1)N discrete values of z (rings). This generates a set of 2(M + 1)N linear algebraic equations 
for the 2(M + 1)N unknown constants B,,, and D~m. The fluid velocity field is completely solved 
once these coefficients are determined. 

The drag force exerted by the fluid on the body can be determined by [40] with the substitution 
of D:(t) expressed by [44]. The result is 

M 

F = 27rq ~ [D2v._,)+D~.I(t~- tin_l). [46] 
m = l  

5.3. Quadratic density distribution 
Similar to in subsections 5.1 and 5.2, the segment AB is again divided into M small segments. 

In the quadratic density approximation, two end points and one middle point are taken to express 
the density distribution functions in each segment. Thus, 

= (t--tm)(t-tm_l) [B,~2m-,)l [n,,(t)l (t--tm_,)(t =r_m) FB., ,l + 
LD.(t)J (tm-t.._,)(tm-rm)LD.~)] (r,~ t~m---t-~_~)lD~m_,)j 

(t t,,,) (t -- ~,,,) 
for t.,_, ~< t ~< tin. [471 

+ (tm'~l tm)(tm_,-rm)LD.~_2~l 
Here fm= (tin + 1 + tin)~2, is the coordinate of the center of the m th segment, and B.(~._ 2), D.(~ _ 2), 
B .~_  1), D . ~ _  , ,  B.<~) and D.ed.) are the corresponding density constants at the two end points 
and the middle point of the segment. 

Substituting [47] into [39a, b] and truncating the infinite series after N terms, one obtains 

M N + I  

v. = Y Y [B~._~ v*., (o, z) + B.~_,> v%(p, z) + B.~.> v%(o. z) 
m = l  n = 2  

+ D.(=m_2) W~l (P, z) + D.(2~-I) W~2(p, z) + D.~z~) W~3(p, z)] [48a] 

and 

M N+I 

v. = Y Y [B~m _ 5) V** (: ,  Z) + B . ~  _,) V** (p, z) + B.(~) V** (p, Z) 
t a l l  n ~ 2  

+ D,~-2)W**(:, z) + D.<2,._ ~)W~*(:, z) + O.(2m)W~*(., z)], [48b] 

where the functions V~k, W*,~, V..k** and W.mk** (k = 1.2, 3) arc defined by [A3]-[A5] in the 
appendix. To use the collocation technique, the boundary condition [5a] after the substitution of 
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[48a, b] is applied at (2M + 1)N discrete values of z (rings) along the surface of the body. The 
resulting system of 2(2M + 1)N linear algebraic equations can be solved to yield the 2(2M + I)N 
unknown constants B,,, and D,,, required in [48a, b] for the fluid velocity components. 

Substituting D2(t) ,  given in [47], into [40], the drag force exerted on the body is obtained as 
M 

F = ~rrq ~ [D2(2,._ 2) + 402(2,._ i) + D2t2,.)](t,. - -  t i n - 1  ). [49] 
m = l  

The equations derived in this section are valid for the axisymmetric motion of a prolate body 
normal to a solid plane wall. For the corresponding motion toward a free surface, the functions 
p~,, 6~, ~" and 6~ in [39a, b] are replaced by ~ ,  7~,, ~t" and 7~' respectively, and the functions fl*.,.k, 
6~, ,  fl ,~ and 6",~, in [41a, b], [42a, b], [45a, b] and [48a, b] (with the substitution of [A1]-[A5]) are 
replaced by ~t,~.k, 7*k, 0t.,.k** and 7,~ defined by [A10]-[A13], respectively. Note that, if numerical 
integrations are used for the evaluation of functions fl.,.k, 6*mk . . . . ,  7.ink, the accuracy and 
convergence behavior of the solution of drag force depends upon the precision of these numerical 
integrations. 

6. SOLUTIONS FOR THE MOTION OF A PROLATE SPHEROID TOWARD A 
PLANAR BOUNDARY 

In this section the method presented in the previous section is used to obtain the solutions for 
the axisymmetric motions of a prolate spheroid perpendicular to a solid plane and to a planar free 
surface. The surface of the prolate spheroid is represented in the circular cylindrical coordinates by 

[ z ( p )  = +_a 1 -- ~,bJ J ' [501 

where a > b > 0 and 0 ~< p ~< b. For a prolate spheroid translating with a velocity U along its axis 
of revolution in an unbounded fluid, the exact solution for the drag force exerted on the body by 
the fluid is (Happel & Brenner 1983): 

F~ = - 6 n q b U f ~ ,  [51a] 

with 

f~ = {¼((2_ 1),/2[((2+ 1)coth-'( - ( 1 } - ' ,  [51b] 

where ( = a /c  and c = (a 2 - bZ) I/2, which is the half distance between the two foci of the prolate 
spheroid. 

The force acting on a spheroid moving along its axis of symmetry and normal to a plane surface 
can be related to its velocity by 

F = -6rrrlbUf,  [521 

where the dimensionless resistance coefficient f is a function of the relative separation distance of 
the spheroid to the boundary and the aspect ratio of the spheroid. 

In section 4, collocation solutions for the axisymmetric motion of a sphere toward a plane surface 
were presented and shown to be in perfect agreement with the exact solutions. We now use the 
same collocation scheme incorporated with the method of distribution of Sampson singularities to 
obtain the corresponding solution for a prolate spheroid. In table 3, numerical results of the 
normalized resistance coefficient f/fo~ for the axisymmetric motions of a prolate spheroid toward 
a solid plane and a planar free surface are presented for two representative cases of the aspect ratio 
a /b  with various values of the relative separation distance d/a.  The values of f / foo  are computed 
by applying either the linear or the quadratic density distribution at each segment for different N 
and M (which shows convergence tests). For a spheroid with its aspect ratio close to unity, a 
constant density distribution of Sampsonlets can usually achieve good convergence behavior for 
the calculation o f f  However, when the aspect ratio of the spheroid deviates further from unity, 
the convergence of the constant density approximation becomes poorer and higher-order approxi- 
mations should be adopted. The numerical solutions of f / f®  for the axisymmetric motion of a 
prolate spheroid toward a solid plane obtained by using the boundary integral method (Hsu & 
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Table 3. Numerical results of the normalized resistance coefficient f / f® for the axisym- 
metric motion of a prolate spheroid toward an infinite plane 

N M d/a  = 5.0 d /a  - 2.0 d /a  = 1.5 d /a  = 1.1 

a/b = 

3 3 
Solid 4 
plane 5 

a 

3 3 
Free 4 

surface 5 

2 (f® = 1.2039), linear density distribution 

1.1567 1.5230 1.8882 3.6496 
1.1567 1.5229 1.8880 3.6468 

1.5229 1.8880 3.6468 
(1.16) (1.52) (1.89) (3.65) 

1.0998 i.3063 1.4872 2.1815 
1.0997 1.3062 1.4871 2.1810 
1.0997 1.3062 1.4871 2.1810 

a/b = lO 

3 2 

Solid 3 
plane 4 

5 
a 

3 2 
Free 3 

surface 4 
5 

(f® = 2.6471), quadratic density distribution 

1.0379 1.128 1.180 1.143 
1.0636 1.182 1.271 1.509 
1.0636 1.182 1.270 1.512 

1.497 
(! .07) (1.18) (i.27) (1.50) 

1.0174 1.069 1.085 1.105 
1.0416 1.116 1.170 1.306 
1.0416 1.116 1.171 i.282 

1.288 

"Results of Hsu & Ganatos (1989). 
Values in parentheses are read from the figures. 

Ganatos 1989) are also presented in table 3 for comparison. It can be seen that our results from 
the method of Sampson singularities agree very well with the results obtained using the boundary 
integral method. In general, the convergence behavior of the method of Sampsonlets is quite good, 
except for the case of large aspect ratio and small spacing distance. 

The normalized resistance coefficient f/foo for the axisymmetric motions of a prolate spheroid 
toward a solid plane and a planar free surface as a function of the aspect ratio a/b for three different 
values of the spacing parameter aid is plotted in figure 2. It can be seen that, due to the increase 
of the effective particle-boundary interaction area that offers hydrodynamic resistance to the 
motion of the spheroid, f/f~o increases monotonically with the decrease of a/b for a given plane 
surface with a fixed a/d. Also, f/fo~ is a monotonically increasing function of a/d for a given shape 
of spheroid. For fixed values of a/b and a/d, as expected, a solid plane always exerts more drag 
on the spheroid than a free surface does. 

i 0  - -  

8 

Z 6 -- a/d 

L 
4 

I I I I I 
0 0.2 0.4 0.6 0.8 1.0 

(a /b )  - I  

Figure 2. Plots of the normalized resistance coefficient for the axisymmetric motions o fa  prolate spheroid 
toward a solid plane ( , .  ) and a planar free surface ( - - - )  vs the aspect ratio of the spheroid with the 

ratio a/d  as a parameter. 
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Although the boundary integral method is effective and suitable for treating the motion of a body 
of arbitrary shape near boundaries, a severe limitation of the technique is its accuracy and the large 
amount of computer time required to evaluate the double integrals in the integral equations. Some 
of these integrals are singular and thus must be integrated analytically in the neighborhood of the 
singularity. For axially symmetric flow past a body of revolution as considered in the present work, 
the integration over the azimuthal angle ~b from 0 to 2z~ may be performed analytically; but, a 
numerical integration over one coordinate is still needed for these integrals. On the other hand, 
when our method of distribution of Sampson singularities is used to solve for the axisymmetric 
flow caused by the translation of a prolate body toward a plane surface, closed-form recurrence 
formulas (see [A18]-[A21] in the appendix) have been derived for the integrals in [A14]-[AI7], 
eliminating the need for a numerical integration if constant, linear or quadratic density distribution 
is chosen. In this way, an enormous amount of computational time has been saved and the accuracy 
and convergence rate of the solution can be greatly increased in comparison with the boundary 
integral method (Weinbaum et al. 1990). For example, the computation time required by solving 
the matrix equation for a given configuration can be approximately estimated by the formulas 
T = 0.014K 2 (for the linear density distribution) and T = 0.035K 2 (for the quadratic density 
distribution), where T is the CPU time in seconds on a DEC 5240 work station and K is the total 
number of collocation points. In contrast, the boundary integral method would need a much longer 
CPU time, given by the formula T = 0.090K 2, on an IBM 3081 computer for a similar geometry 
(Hsu & Ganatos 1989). Furthermore, the force and the torque on a body of revolution when its 
velocity disturbance is represented by the spherical singularities are known to depend only on the 
values of the two lowest-order coefficients associated with the spherical singularities. This 
observation suggests that the method of spherical singularities leads to a more accurate and efficient 
scheme for the resistance or mobility evaluations of the body than the boundary integral method, 
in which the resultant force and torque are determined by a summation of the Fourier-Legendre 
series after an integration over the surface of the body (Hsu & Ganatos 1989). 

7. SOLUTIONS FOR THE MOTION OF A PROLATE CASSINI OVAL TOWARD A 
PLANAR BOUNDARY 

In the previous section the good accuracy and convergence behavior of the method of Sampson 
singularities has been demonstrated by the numerical results for the axisymmetric motion of a 
prolate spheroid normal to a plane surface. In this section the same method is used to solve the 
corresponding motion of an arbitrary prolate axisymmetric body. We choose the Cassini oval as 
an example, because when the parameter takes different values, the oval of Cassini will have various 
forms, from convex contour to partial convex and partial concave contour. The surface of the 
prolate Cassini oval can be expressed as 

p ( z )  = + [(4c2z 2 + b4) '/2 - z z - c2] '/2, [53] 

where b > c ~> 0 and 0 ~< z ~< (b 2 + c2) ~/2. This body of revolution is made from the curve described 
by a point such that the product of its distances from two fixed points (distance 2c apart) is a 
constant b 2. If ( c / b )  2 <<, 0.5, the surface of the prolate Cassini oval is convex everywhere and its 
maximum radius develops on the plane z = 0, as shown in figures 3(a, b). The constant (b 2 - c2) ~/2, 
which is the distance from the origin to a point of intersection formed by the oval with the p-axis 
(taking z = 0), equals this maximum radius. Note that the Cassini oval degenerates to a sphere of 
radius b when c = 0. If  0.5 < ( c / b )  2 ~< 1, as illustrated in figures 3(c, d), the surface of  the body has 
a concave shape in the region near the plane z = 0 but remains convex in the other region. For 
this case, the maximum radius of the body which occurs at the coordinate z = c(1 - b4/4ca) I/2 is 
equal to b2/2c. For a prolate Cassini oval of any shape, the distance from its center to each of the 
two points on its surface intersecting the axis of symmetry is (b 2 + c2) ~/2. 

The drag force on a Cassini oval translating axisymmetrically toward a plane surface with a 
velocity U can be written as [52], and the dimensionless resistance coefficient f is a function of the 
separation parameter (b2+ c2)~/2/d and the aspect ratio of the body c/b .  For the axisymmetric 
motion of a Cassini oval in an unbounded fluid, f = f o o ,  which is dependent only on c/b .  Some 
values offo0 calculated by the method of distributed Sampsonlets are tabulated in table 4. These 
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(b) 

( J 
X 

(c) 

C 
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Figure 3. The various shapes of the Cassini oval with the same b. The coordinates (x, y) denote (z, p) 
for a prolate body and represent (p, z) for an oblate body. The values of (c/b) 2 are: (a) 0.25; (b) 0.5; (c) 

0.75; (d) 1.0. 

results show that the coefficient f~ for the movement of a prolate Cassini oval along its axis of 
revolution is a monotonically decreasing function of the aspect ratio c lb. 

In figure 4 numerical results of the normalized resistance coefficient f / f~  for the axisymmetric 
motions o f a  prolate Cassini oval normal to a planar wall and a planar free surface as a function 
of c/b for three different values of the spacing parameter (b 2 + c2)~/2/d are plotted. It can be seen 
that f/f~o is a monotonically decreasing function of c/b for a given plane surface with a constant 
(b 2 + c2)1/2/d. An examination of figures 3(a--d) shows why a smaller effective particle--boundary 
interaction area occurs for a prolate Cassini oval with a larger c/b when (b2+ c2)l/2/d is fixed. 
Similarly to the case of a prolate spheroid considered in the previous section, f/foo is a 
monotonically increasing function of (b 2 + c2)m/d for a given plane surface and a fixed shape of 
Cassini oval. Also, a solid plane always generates more viscous drag on the oval than a free surface 
does for given values of c/b and (b 2 + ¢2)1/2/d. 

Table 4. The dimensionless resistance coefficient of a 
Cassini oval moving along its axes of revolution in an 

unbounded fluid 

f~ f~ 
(for prolate (for oblate 

(c/b)' Cassini oval) Cassini oval) 

0 1.0000 1.0000 
O. 1 0.9700 1.0300 
0.2 0.9402 1.0599 
0.3 0.9107 1.0896 
0.4 0.8817 1.1044 
0.5 0.8534 I. 1627 
0.6 0.8261 1.1770 
0.7 0.8002 1.2054 
0.8 0.7759 i.2335 
0.9 0.7537 1.2615 
1.0 0.734 1.286 
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Figure 4. Plots of the normalized resistance coefficient for the axisymmetric motions of a prolate Cassini 
oval toward a solid plane ( ) and a planar free surface ( - - - )  vs the aspect ratio of the Cassini oval 

with the ratio (b 2 + c2)l/2/d as a parameter. 

8. A X I S Y M M E T R I C  MOTION OF AN A R B I T R A R Y  OBLATE BODY T O W A R D  A 
PLANAR B O U N D A R Y  

The axisymmetric motion of  an arbitrary prolate body toward a plane surface was considered in 
section 5 and a set of  Sampson spherical singularities must be distributed on a segment along the axis 
of  symmetry inside the body. In this section we consider the corresponding motion of an arbitrary 
oblate body and the Sampsonlets should be distributed on the fundamental surface within the body. 
Since the oblate body and the fluid motion are axisymmetric, the fundamental surface should be a 
circular disk Sd normal to the z-axis and with its center at the origin of  the coordinate frame. 

Let Q be an arbitrary point on Sd which is expressed with the cylindrical polar coordinates p = ~, 
~b = ~ and z = 0. Then the velocity disturbance at another point P(p = p, ~ = 0, z = z) in the region 
z ~< d(with an infinite solid plane situated at z = d) generated by the Sampson singularity at Q can be 
obtained using [19a, b]: 

~p=P --# c°sc~ ~=2[B.fl,(p, ' " . P .  z, 0) + D. 6. (p , z, 0)], [54a] 

~ =/5 sin q~ ~ [B.fl'.(p*, z, O) + D.6'.(p*, z, 0)] [54b] 
P *  n=2 

and 
o~ 

~ = ~ [B, fl" (p*, z, O) + D,6'~' (p*, z, 0)], [54c] 
n=2  

where p * is the distance from point Q to the projection of point P on the plane z = 0, 

p ,  = (p2 +/~2 _ 2p~ cos q~)w2. [55] 

Due to the axisymmetry of the fluid motion, the singularities must be distributed uniformly on the 
circles in S~ with their centers at the origin of  coordinates. Hence, the unknown density distribution 
coefficients B, and D, in [54a-c] are functions of  ~ only. 

The total disturbance of the flow field produced by the oblate body and the plane wall can be 
approximated by the superposition of the individual disturbances [54a-c] induced by the whole set of 
singularities on the fundamental disk Sd. Thus, at an arbitrary location in the region z ~< d, we have 

ffs  rfo Vp = ~p d S  = 
d . = 2 d O  P 

+ D.(p)6.(p , z, 0)1~ dh dq~ [56a1 
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and 

v~= ezdS = _ [n. (k )8" (p *, z, 0) 
d n = 2 d  0 d o 

+ D.(~)6'~(p*, z, 0)]/~ d~ dq~, [56b] 

where R is the radius of the disk Sd. The integral of 13~ vanishes because the fluid motion is 
axisymmetric. Equations [56a, b] provide an exact solution for [la, b] that satisfies [5b] and [5c] and 
the unknown density distribution functions B.(t~) and D.(~) must be determined from the 
remaining boundary condition [5a] using the collocation method. 

The drag force exerted by the fluid on the oblate axisymmetric body can be obtained by 
substituting [56a, b] into [7] and applying the orthogonality properties of the Gegenbauer 
polynomials. The result is 

f: F = 8n2q D2(~)t~ d~. [571 

Similar to the case of the motion of a prolate body examined in section 5, the density distribution 
functions B. (t~) and D. (t~) in [56a, b] can be approximated to various orders to satisfy the boundary 
condition [5a]. In order to use the boundary-collocation method, the infinite series in [56a, b] are 
truncated after N terms. The radius of the fundamental disk Sd is divided into M segments, and 
~,,_ 1 and t~m denote the radial coordinates of the inner and outer end points, respectively, for the 
ruth segment. If the length of each segment is the same, then t~j = j R / M  for j = 0, 1, 2 , . . . ,  and 
M. 

In the constant density approximation, the density distribution functions B. (~) and D. (t~) in each 
segment are substituted by constants and the truncated form of [56a, b] can still be expressed by 
[41a, b] with the functions 8"1, 6 '1 ,  8** and 6** being replaced by E~.I, F~,I, E,~,. I and F'.'~, 
defined by [A37]-[A40] in the appendix, respectively. Thus, the collocation technique described in 
section 5 can be used to satisfy the boundary condition [Sa] and to determine the 2 M N  density 
constants B.,. and D.,. required for the fluid velocity field. Since the density functions in each 
segment are constant, [57] for the drag force exerted on the oblate body becomes 

M 

V = 4n2q ~ D ~ ( ~  - ~_~) .  [58] 

When the linear density distribution of Sampsonlets is employed, the distribution functions B. (/~) 
and D. (t~) in the mth segment are given by [44] with t, t,. _ ~ and t.  being replaced by ~, jr,._ I and 
~,., respectively. Hence, the fluid velocity components have the same form as [45a, b], but the 
functions 8.,,~,* 6.,.,,* 8.~, and 6.,,~** in [A1] and [A2] must be replaced by E'.,.k , F.,,o,, . . . . .  E, ,~ and F..~, 
respectively. Application of the boundary condition [Sa] to these velocity components can be 
accomplished by using the collocation method, After determining the 2(M + 1)N unknown 
constants B.,. and D..., the drag force exerted on the body by the fluid can be evaluated by the 
formula 

M 

V = ~rc2q ~ [(t~m + 2t5., _ ,  ) D 2 ( , .  _ l) + (2t~m + ~,.-, )Dz.] (~., - ~., _ 1 ), [59] 
r a = l  

which is obtained by the substitution of D2(:) into [57]. 
In the quadratic density approximation, the distribution functions B.(:)  and D.(t~) in the ruth 

segment are given by [47] with t, t.,_ ~, t,. and T,. being replaced by : ,  ~.._ ,, t~,. and fir. 
(=  (~,._ ~ + :,.)/2), respectively, and the fluid velocity fluid can also be written in the form of [48a, b] 

V.,~ and ** * (after the substitution of V**, W,k,  ** W..~, defined by [A3]-[A5]) with 8*k, 6.m,, 8** 
and 6** being replaced by E'.,.,, F'.,.k, E ~ ,  and F ~ ,  respectively. To apply the boundary condition 
[5a] to determine the 2(2M + 1)N unknown constants B.,. and D.,. required for the velocity field, 
the collocation technique must be used. Substituting D~(:) into [57], one obtains the drag force 
on the body as 

M 

F = ~ n ~ q  ~.. [P.-,D2~2m-2)+Z(P.+~.-,)D~(2~-,~+f~.D~2.)](k.--~m_I). [60] 
m=l 
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Up to this point, the analysis in this section is valid for the axisymmetric motion of an oblate 
body perpendicular to a soid plane wall. For the corresponding motion toward a free surface, the 
functions fl', 6,, fl" and 6" in [54a--c] and [56a, b] are replaced by ct,, ?,, ~ '  and 7", respectively. 
Thus, the functions E',,k, F,,.k, E~.k and F',',.k in the analysis must be replaced by G,,,k, H,,.k, G',',,k 
and H','mk, defined by [A41]-[A44], respectively. To evaluate functions E'mk, F',,k . . . . .  H"mk, 
numerical integrations are required. 

9. S O L U T I O N S  F O R  T H E  M O T I O N  O F  A N  O B L A T E  S P H E R O I D  T O W A R D  A 

P L A N A R  B O U N D A R Y  

In section 6, numerical solutions of the drag force experienced by a prolate spheroid translating 
axisymmetrically toward a plane surface were presented. In this section the similar singularity 
method and collocation technique described in the previous section will be used to solve 
the corresponding motion of an oblate spheroid. The shape of the oblate spheroid can 
still be represented by [50], but now with b > a > 0. In addition, the exact solution for the drag 
force exerted on an oblate spheroid moving with a velocity U along its axis of symmetry in an 
unbounded fluid can be expressed as [51a], with the coefficient f~ given by (Happel & Brenner 
1983): 

foo = {]((2 + 1)1/2[( _ ((2 _ l)cot- '  (]}-', [61] 

where ~ = a/c and c = (b 2 - a2) ~/:, which is the radius of the focal circle of the oblate spheroid. 
Again we employ [52] to define the dimensionless resistance coefficient f for the axisymmetric 
motion of an oblate spheroid toward a plane surface. 

The numerical solutions off/fo~ for the axisymmetric motions of an oblate spheroid toward a 
solid plane and a planar free surface are presented in table 5 for two representative cases of the 
aspect ratio a/b with various values of the relative separation d/b. Either the linear or the quadratic 
density approximation is used to calculate the values o f f / f~  and to show the convergence tests. 
The numerical results for the motion of an oblate spheroid along its axis of revolution and normal 
to a solid plane obtained using the boundary integral method (Hsu & Ganatos 1989) are also listed 
in table 5 for comparison. Similarly to the case of a prolate spheroid considered in section 6, the 
convergence behavior of the method of Sampson singularities in general is satisfactory. The 

Table 5. Numerical results of the normalized resistance coefficientf/f~ for the axisymmetric motion of an oblate spheroid 
toward an infinite plane 

N M d/b = 5.0 d/b = 2.0 d/b = 1.5 d/b = 1.1 d/b = 0.8 d/b = 0.55 

5 4 
Solid 6 
plane 7 

8 
a 

5 4 
Free 6 

surface 7 
8 

4 2 
Solid 4 3 
plane 6 3 

a 

4 2 
Free 4 3 

surface 6 3 

a/b = 0.5 (f~ = 0.90531), linear density distribution 

1.2488 1.8669 
1.2498 1.8573 
1.2498 1.8573 

(1.25) (1.86) 

1.1552 1.5019 
1.1553 1.4757 
1.1553 1.4757 

2.1651 3.4129 9.0577 62.10 
2.3847 3.6468 7.2612 62.39 
2.3852 3.6468 7.2611 62.51 

7.2612 62.38 
2.385 3.589 7.262 62.9 

1.7778 2.2608 3.4567 18.65 
1.7175 2.2041 3.4635 18.51 
1.7174 2.2042 3.4636 18.41 
1.7174 2.2041 3.4635 18.53 

a/b = 0.1 (f~ = 0.85245), quadratic density distribution 

1.231 1.749 2.140 2.866 
1.231 1.749 2.141 2.871 
1.231 1.748 2.141 2.880 
(1.43) (1.75) (2.14) (2.88) 

1.145 1.426 1.616 1.941 
1.145 1.426 1.616 1.942 
1.145 1.425 1.615 1.949 

"Results of Hsu & Ganatos (1989). 
Values in parentheses are read from the figures. 
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Figure 5. Plots of the normalized resistance coefficient for the axisymmetri¢ motions of an oblate spheroid 
toward a solid plane ( ) and a planar free surface (-- -) vs the aspect ratio of the spheroid with the 

ratio a/d as a parameter. 

agreement between our results and the boundary integral solutions is quite good, except for one 
case with a/b = 0.1 and d/b = 5.0 [for which the drag result of Hsu & Ganatos 0989) is obviously 
in error]. 

In figure 5, the normalized resistance coefficient f/fo~ for the axisymmetric motions of an oblate 
spheroid toward a solid plane and a planar free surface as a function of the aspect ratio a/b for 
three different values of the spacing parameter a/d is plotted. Similarly to the boundary effects on 
the motion of a prolate spheroid, f / f ,  increases montonically as the ratio a/b decreases or a/d 
increases, keeping other factors fixed. The hydrodynamic drag on the spheroid can be very large 
when a/b is small and a/d approaches unity. Again, a solid plane always exerts more drag on the 
oblate spheroid than a free surfae does for a given spheroid with the same separation distance to 
the plane. 

10. SOLUTIONS FOR THE MOTION OF AN OBLATE CASSINI OVAL TOWARD A 
PLANAR BOUNDARY 

In this section the method of Sampson spherical singularities is used to obtain the solutions for 
the axisymmetric motion of an oblate Cassini oval perpendicular to a plane surface. Of course, the 
same method can be utilized to solve the corresponding problem for an arbitrary oblate 
axisymmetric body. The surface of the oblate Cassini oval is represented by 

z(p) = _+ [(4c2p 2 + b4) 1/2 - / 9  2 - -  ¢ 2 ] 1 / 2 ,  [62] 

where b > c i> 0 and 0 ~< p ~< (b 2 + C2) I/2. When (c/b) 2 <, 0.5, the surface of the oblate Cassini oval 
is convex everywhere and its maximum thickness develops along the axis of revolution, as 
illustrated in figures 3(a, b). The constant (b: - c2) I/2, which is the distance from the origin to the 
point of intersection formed by the oval with the z-axis, equals one-half of this maximum thickness. 
When 0.5 < (c/b) 2 ~< l, the surface of the body has a concave shape in the region near the axis of 
symmetry but remains convex in the other region, as shown in figures 3(c, d). In this case, the 
maximum thickness of the body occurs at the coordinate p = c(1 - b4/4c4) ~/2 and one-half of this 
maximum thickness is equal to b2/2c. 

The drag force on an oblate Cassini oval moving axisymmetrically toward a plane surface with 
a velocity U can still be written as [52] and the dimensionless resistance coefficient f is a function 
of the aspect ratio c/b and the separation parameter a*/d, where a* = ( b  2 - c 2 )  1/2 if (c/b) 2 <<, 0.5 
and a* = b2/2c if (c/b) 2 > 0.5. For the axially symmetric motion of an oblate Cassini oval in an 
unbounded f lu id f  =f~0, which is dependent on c/b only. Some values of this foo computed by the 
method of Sampson singularities are also presented in table 4. Contrary to the case of a prolate 
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Cassini oval, the coefficient f® for the translation of an oblate Cassini oval along its axis of 
symmetry is a monotonically increasing function of c/b. 

The normalized resistance coefficientf/f~ for the axisymmetric motions of an oblate Cassini oval 
toward a solid plane and free surface plane as a function of c/b for three different values of the 
spacing parameter a*/d is plotted in figure 6. Opposite to the situation with a prolate Cassini oval, 
f/f® for an oblate oval increases monotonically with the increase of c/b for a given plane surface 
with a fixed a*/d. This behavior can also be understood by a careful examination of figures 3(a-d). 
Again, f/f~ is a monotonically increasing function of a*/d for a given plane and a given oval, and 
a solid plane always exerts more drag on the oval than a free surface does for fixed values of c/b 
and a*/d. 

l l .  CONCLUDING REMARKS 

In this work the slow motion of an arbitrary axisymmetric body in viscous fluid along its axis 
of revolution and perpendicular to an infinite plane has been analyzed by the use of the method 
of internal singularity distributions combined with the bounded-flow collocation technique. For the 
case of the axisymmetric motion of a prolate body, a truncated set of Sampson singularities is 
distributed either discretely or continuously along the axis; while for the case of an oblate body, 
the Sampsonlets are placed on the fundamental plane of the body. The results for the hydrodynamic 
drag exerted on the body indicate that the solution procedure converges rapidly and accurate 
solutions can be obtained for various cases of the body shape and the separation between the body 
and the plane. Although the numerical solutions were presented in the previous sections only for 
a sphere, a spheroid and a Cassini oval, the combined analytic and numerical technique utilized 
in this work can easily provide the hydrodynamic calculations for an axisymmetric body of other 
shapes. 

Throughout this work we have only considered the translation of a body axisymmetrically 
towards a planar surface. However, the method of internal distribution of spherical singularities 
can easily be employed to analyze the axisymmetric rotation of an arbitrary body of revolution 
in the presence of an infinite planar surface. For example, the numerical solutions for the Stokes 
flow generated by the rotation of a prolate spheroid about its axis of symmetry which is 
perpendicular to a solid plane or a planar free surface were obtained by Yan et al. 0988) using 
the method of spherical singularities combined with the boundary collocation technique. Moreover, 

16 [ - - ~  100 

14 -- 8 ~ ! -- 70 0.8 
12 40 

10 10 
a*/d = O. 

/ \ / o.s 

".-_-_-2222 . . . . . . . . .  ' 

0 0.2 0,4 0.6 0.8 1.0 

(c/b) 2 

Figure 6. Plots of the normalized resistance coefficient for the axisymmetric motions of an oblate Cassini 
oval toward a solid plane ( ) and a planar free surface ( - - - )  vs the aspect ratio of the Cassini oval 
with the ratio a*/d  as a parameter, where a* = (b 2 - c2) 1/2 if (c/b) 2 <~ 0.5 and a* = b2/2c if (c/b) 2 > 0.5. 
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the axisymmetric singularity distribution method can also be utilized to investigate some restricted 
three-dimensional (asymmetric) flows induced by the motion of a body of revolution, such as the 
translation of a prolate spheroid or a prolate Cassini oval in an arbitrary direction with respect 
to its axis of symmetry in an unbounded fluid (Lin & Wu 1986). 

It is generally recognized that the distributed internal singularity methods are more limited in 
their range of application than the boundary integral equation method, which is much more flexible 
in treating problems with complicate body shapes and boundaries. Nonetheless, the singularity 
method presented herein has several advantages: (a) no singular integrals appear, since the 
collocation points lie on the body surface and the singular points lie within; (b) closed-form 
recurrence formulas for the integrals in the linear algebraic equations have been obtained for the 
case of an arbitrary prolate axisymmetric body, eliminating the need for a numerical integration; 
and (c) the method, when it can be used, has proved to be far more accurate and efficient than 
the boundary integral equation technique. 
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A P P E N D I X  

For conciseness, the definitions of some functions in sections 5 and 8 are listed in this appendix. 
The functions appearing in [45a, b] and [48a, b] are defined as 

I { F,;,,..z>l 
1 

V'm'(P'Z) I =t,.--t,._-~----~l tm / , = ( . , z )  / 
w,.-, ~o, z) j L a** (p, z) l 

,,,,z>] } 
_ ~ % ( v ,  z )  

/~** (p, z) ' 
a**(p, z) 

[All 

1 
V;r.~ (p, z) [ 

W'.~:(p,z)J = -1 
V ' n ~  2 ( p ,  Z ) t m  - -  t m  - I 

w'.': (p, z) f t.,_, i/~*~ (p' ~) 
L,~**(p, ~) 

~*~.2(p, z ) /  , 
/~** (p, z ) |  
a** (v, ~) J 

[A21 
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I 
q 

v*, (p, z) I 
W~nml (p, Z) 
V.~, (p, z) 
w.** (p. z)  

v*~: (p, z) 
w*,.2 (p, z)  
v** (p,z) 
w * *  (p. z)  

2 

= (t,. - t.,_,) 2 

- 4  

(tin-- 5 . - ,  )2 

(p, z) 
tmTm l (~*Z; (p, z ) 

La**(p,z) 

V #.,.,(p. z) 
/ an~ml ( p '  Z )  

tmtm-! / fl** (p, Z ) 

[~**(p,~) 

- (t. + L )  

- - ( t~+tm_l)  

[# *2(p, z) 1 
a*<p, z) / 

a**(p, ~)J 

#%(p, z)1 

~**(p, ~) J 
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F,'--,,)l ) +/~'..,(,.,)/ , 
/ r*o, .z)  / 
1 ~** (p, z)j 

I #*,,3(p, z) 
+ 

/ ~*.,3(p, z) 
1 

/ ~ * * [ ~  z" L rim3 ~,P, ) 

9 

a nd  

W~nm3(P'Z) -- 2 tm_lTm / ~ = , < o . ~ ) /  -¢,._, +7~) / ~:-~<o,z) 
v**(p, z) / ( 'm-- tin- 1) 2 / ,=(p.z) /  /r*(~,.z) 
w,..~ (p, =) ] L a.,.~ (,. ~) ] L a** (p, =) 

+ 6,,m3(P, Z) , 

fl nm3 (P, z )  
~**(p, z) 

where n = 2, 3 . . . . .  N + 1 and  m = 1, 2, 3 . . . . .  M.  In  [41a, b], [42a, b] and  [A1]~A5] ,  

f l ~ k ( O , z ) =  tk - l f l '~ (O,z , t )d t  
m-I 

= B*k(O, z)  -- B ,~(O,  2d - z)  + 2(n + 1)(d - z)B(.+ Omk(O, 2d -- z), 

6 , ~ ( p , z ) =  tk -16; (p ,Z ,  t ) d t  

--D.mk(P, z ) - D . , , ~ ( p ,  2d - z)  - (2/n)(n - 1)(n - 3 ) (d  - z)B~_o,~(p ,  2d - z)  

+ 2(2n - 3 ) (d  - z)[dB*~,,~(p, 2d - z)  - B,~k+ ,)(0, 2d - z)], 

fl*~*(O,z)= t k - ' f l ' ~ ( p , z , t ) d t  
m-i 

= B.mk(O, z)  -- B**k(p, 2d - z)  - 2(n + 1)(d - z ) B ~ o m k ( P ,  2d - z)  

a n d  

m-I 

= _ _ ) ( . - , ~ ( o  ) D~*~(p, z)  D~*k(p, 2d - z)  + 2(n 2)(d - z B** , 2 d  - z 

- 2(2n 3 ) (d  z)[dB*~,~(p, 2d - z)  - ** - - B ~ k + 0 ( P ,  2 d  - -  z ) l ,  

[A3] 

[A4] 

[A51 

[A6] 

[A7] 

[A8] 

[A9] 

MF 20/L--N 
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where k = 1, 2, 3. Also, when the fucntions fl~,, ~ ,  fl~ and 6~ (defined by [21a-cl]) in [A6]-[A9] 
are replaced by ~ ,  ? ' ,  ~2 and ?" (defined by [29a-d]), respectively, one has 

tX*mk ( p ,  2 )  = t k - l o t ' n ( p ,  z , t ) d t  

m - I  

= B , ~ ( p ,  z )  + B'ink(P, 2d - z ) ,  [AI0] 

~k(p,z)= :-~,'~(o,z, t)dt 
m - I  

2n - 3 
= D*,,~(p, z )  + [(2d - -  z)B~_ l ) m k ( P ,  2d - z) - * B(~_ I)m(k + 1)(P, 2d -- z)] 

n 

n - 2  
n i B~-2)mk(P, 2d - z), [All]  

~t  tm at**(p, z) = t k - I ~ t ' ~ ( p , z , t ) d t  
m - I  

= B * * ( p ,  z )  - a * * ( p ,  2 d  - -  z )  [AI2] 

and 

7 * ~ * ( p , z ) =  t k - l y ' ~ ( p , z , t ) d t  
m--I 

2n - 3 
* *  .I ( n -  I)mk(P,  2d - = D.mk(P,Z)  - -  [ ( 2 d -  z l B  ** z~ B * *  -- ~ -  ( .- l) ,~k+l)(p,  2d  z)] 

/I 

R - -  
+ 3 B~*-2~.k(P, 2d - z) .  [A13] 

n 

and 

In [A6]-[A13], 
t m 

B * ~ k ( p , z ) =  t k - l B ' ~ ( p , z  - t )  dt,  
m - I  

D ~ k ( P , z )  : - ~  " = D . ( p ,  z - t )  dt, 
m - I  

B * * ( p ,  z )  = t k -  I B :  (p, z -- t )  dt,  
m - I  

[Al4] 

[A15] 

[A16] 

tin 
D * * ( p , z ) =  t k - l D " ( p , z - - t ) d t ,  [A17] 

m - I  

where k = 1, 2, 3, 4. The above four integrals can be evaluated analytically using [13a-d] for the 
definitions of functions B'., D~, B~ and D~'; the results are expressed recurrently as 

B , ~ ( p , z )  k - l  . t ~ . k - l  R, t .~  I) - k - l B *  =tin  R . ( p , z - - m J - - ' m - I  . w , z - - t I -  C . - t~k - I ) (P ,Z)  (n~>l), [AI8] 
n 

D * ~ , ( p , z )  ~-I  , tin) k - I  • _ t m _ l ) _ k - l D  , = t~ S . ( p ,  z - - t ~ _ l S . ( p , z  ( ._ l ) , ,~_l ) (p ,z )  
n 

2(k - l) 
- -  - zB~n-2~(k-I) (P, z)] (n/>2), [AI9] 4 n(n  - 1) [B(.-2)mk(P, z) * 

B***(p , z )  t k - I R " t ' ~  . k - I ~ , , t ~  _ t ~ _ l )  k - - l B * *  " z )  (n~>l), [A20] = . m  . . ,  , , . ,  z - t ~ )  - , ~  - l - , ,  w ,  z ~ , -  ~ ~ k -  I) ~ P ,  
n 
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a n d  

t m ) - t m _ l S . ( p , z -  r e _ l ) - - - -  ( . - I ) , . ( /= - t ) (P .  z )  D**(p,z)  = tkm-tS"(p,z - *-I ,, t k - I  D** 
n 

2(k - 1) rB** -B**  
(n - 2)m(k - +n(n 1) t ("-  2)r"* (P '  2)  --  1) (P '  Z) 

1 
n --2 B(n-3)m(t-')(p'z)] (n/>3). 

In  [ A I 8 ] - [ A 2 1 ] ,  

R'.(p, z - t )  = f B'.(p,z - t )dt  = 1B"-'n (p,z - t), 

S' .(p,z - t ) =  f D'.(p,z - t ) d t  = l  2 

R~ (p, z - t) = f B:' (p,z - t) dt = l  - t) 

a n d  

S " ( p , z  t) f D" (p,z t )d t  1 2 . . . . .  D ~ _ l ( p , z - - t ) + ~  
n 

2 
+ B ' _  3 (P, z - -  t);  

n(n - 1)(n - 2) 

a n d  

n ( n  - l )  

n ( n  - 1) 

/ 

/ 

[A211 

[A22] 

- -  - B '  - t ) ,  [A23] (z t )  . _ 2 ( p , z  

(z DB" " - t) - -  3 n - 2 [ P ,  Z 

[A24] 

[A25] 

1 [,o2 t)21,/21,, " [A26 ]  a*,(p,~)=~ + ( z - . .  , . _ , .  

B . 2 ( p . z ) = { ~ s i n h - ,  z - t  z - t  L02 _t)2],/2t" P ~p + (z + zB*, (O, z ) ,  [A27] 
) t in - I 

= -- -- + 2zB*2(p, z) -- z2B*l (p, Z), [A28] 
) t in - I 

z - t t/2 ,., [A29] D*., (p,  z )  = - - - -  [/92 + (z --  0 2] It. _ , ,  
P 

D~m2(P,z)={~__~L02+( 2 /)213/2 p i p 2  + (z t)Ol/2} tm - - - + zD*ml ( P ,  z ) ,  [ A 3 0 ]  
tm - I 

tt~ - l ~ 
Bo** (p, z )  = - s i n h - '  z - t [A31] 

P 

B~kn* 2 ( p ,  Z )  [ p 2  . ~  ( Z  ,321'/21tm ~ . D * *  = - , )  j ,,.~ - ,  ~- , , ~ , ( p ,  z) ,  [A32] 

B**3(p,z)={p__~sinh_lZ-t z - t  2 t "  - -  ~- Lo + (z - t)2] 1/2 + 2zB~*2(p, z) - z2B~* I (p,  g) ,  
P .J,,. _ 

D 2,.t ( P ,  z )  = [ p  2 + ( z  - t )2 ]  - i/2 _ s i n h  - i , 
P J,,. _, 

{ '2 t" D~,~ (O, z) = [02 + (z - t Y ] :  + ~-[02 + (z - 0~1 -':2 + zDg,*~ (p, z) 
J tm - I 

[A33] 

[A34] 

[A35] 
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and 

D ~ ( p , z ) = { p : s i n h  , z - t  z - t [ p : + ( z _ t ) : ] , / 2  pZ(z- t )  t '~ ~ -  2 ~ [ P 2  +(z-t)2]-'/zj,m_ ' 

+ 2zD**(p, z) - .2 r)** .¢., L - 2 m  ' ( p ,  Z ) .  [ A 3 6 ]  

The following are the definitions of some functions used in section 8: 

fo~"ff " cos4~ E;, . , ,  ( p ,  z )  = #* p - # -, P ,  fl,~ (p *, z, 0) dti de  [A37] 

F;,.. (p, z) = /~t. P - /5  m , P* 6~ (p* ,  z, 0) d# dq~ [A38] 

12"~ m E'~k (0, z) = ~kfl., ( p .  z, 0) d~ d4; [A39] 
,./0 m I 

F"k (0, z) = ~k 6'~ (p *, z, 0) d~ dq~ [A40] 
m - I  

G;,,.k (p, z) = #~'P - # ,.-, p .  a,~ (p*, z. 0) d# d4~ [A41] 

; "  f,),. #kp-~  cos$ 
H'.mk(p,z) = ..-, p .  ?,~ (p*, z, 0) d~6 dq~ [A42] 

G'.~k (p, z) = ~k~., (p. ,  z, 0) d~ de  [A43] 
m I 

and 

H'.~k (0, z )=  ~k?;, (0", z, 0) d¢3 d4; [A441 
J 0  m - I  

where p* is defined by [55], n = 2, 3 . . . . .  N + 1, m = 1, 2 . . . . .  M and k = 1, 2, 3. The integration 
in [A37]--[A44] can be performed numerically after the substitution of [21a-d] or [29a-d]. 


